Министерство науки и высшего образования РФ

ФГБОУ ВО Уральский государственный лесотехнический университет

Инженерно-технический институт

Кафедра управления в технических системах и инновационных технологий

Рабочая программа дисциплины

включая фонд оценочных средств и методические указания для самостоятельной работы обучающихся

Б1.Б.22 – ТЕПЛОФИЗИКА

Направление подготовки 18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии Направленность (профиль) – «Охрана окружающей среды и рациональное использование природных ресурсов»

Квалификация – бакалавр Количество зачётных единиц (часов) – 3 (108) Разработчик: канд. техн. наук, доцент / А.И. Сафронов /

Рабочая программа утверждена на заседании кафедры управления в технических системах и инновационных технологий (протокол № 5 от « 10 » кибарт 2021 года).

Зав. кафедрой / А.Г. Гороховский /

Рабочая программа рекомендована к использованию в учебном процессе методической комиссией химико-технологического института (протокол № 5 от « 12 » мартиа 2021 года).

Председатель методической комиссии ХТИ / И.Г. Первова /

Рабочая программа утверждена директором химико-технологического института Директор ХТИ / И.Г. Первова /

«<u>12</u>» <u>марто</u> 2021 года

Оглавление

1. Общие положения
2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с
планируемыми результатами освоения образовательной программы4
3. Место дисциплины в структуре образовательной программы
4. Объем дисциплины в зачетных единицах с указанием количества академических часов,
выделенных на контактную работу обучающихся с преподавателем (по видам учебных
занятий) и на самостоятельную работу обучающихся5
5. Содержание дисциплины, структурированное по темам (разделам) с указанием
отведенного на них количества академических часов
5.1. Трудоемкость разделов дисциплины
5.2. Содержание занятий лекционного типа
5.3. Темы и формы занятий семинарского типа
5.4. Детализация самостоятельной работы
6. Перечень учебно-методического обеспечения по дисциплине
7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по
дисциплине
7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения
образовательной программы9
7.2. Описание показателей и критериев оценивания компетенций на различных этапах их
формирования, описание шкал оценивания
7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний,
умений, навыков и опыта деятельности, характеризующих этапы формирования
компетенций в процессе освоения образовательной программы
7.4. Соответствие шкалы оценок и уровней сформированных компетенций12
8. Методические указания для самостоятельной работы обучающихся
9. Перечень информационных технологий, используемых при осуществлении13
образовательного процесса по дисциплине
10. Описание материально-технической базы, необходимой для осуществления14
образовательного процесса по дисциплине14

1. Общие положения

Дисциплина «Теплофизика» относится к дисциплинам базовой части блока 1 учебного плана, входящего в состав образовательной программы высшего образования 18.03.02 — Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии (профиль — Охрана окружающей среды и рациональное использование природных ресурсов).

Нормативно-методической базой для разработки рабочей программы учебной дисциплины «Теплофизика» являются:

- Федеральный закон «Об образовании в Российской Федерации», утвержденный приказом Минобрнауки РФ № 273-ФЗ от 29.12.2012;
- Приказ Минобрнауки России № 301 от 05.04.2017 г. Об утверждении порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры.
- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по направлению подготовки 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» (уровень бакалавриат), утвержденный приказом Министерства образования и науки РФ № 227 от 12.03.2015;
- Учебные планы образовательной программы высшего образования направления 18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии (профиль Охрана окружающей среды и рациональное использование природных ресурсов), подготовки бакалавров по очной и заочной формам обучения, одобренный Ученым советом УГЛТУ (протокол №6 от 20.06.2019) и утвержденный ректором УГЛТУ (20.06.2019).

Обучение по образовательной 18.03.02 — Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии (профиль — Охрана окружающей среды и рациональное использование природных ресурсов) осуществляется на русском языке.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Планируемыми результатами обучения по дисциплине являются знания, умения, владения и опыт деятельности, характеризующие этапы/уровни формирования компетенций и обеспецивающие достижение планируемых результатов освоения образовательной программы в целом.

Целью изучения дисциплины является теоретическая и практическая подготовка инженера, способного осуществить обоснованный выбор и грамотную эксплуатацию современного теплотехнического оборудования на основе принципов совершенствования технологических процессов, экономии и рационального использования энергоресурсов.

Задачи дисциплины:

- дать представление о понятийном аппарате, основах технической термодинамики и её основных законах;
- научить методам теоретического расчета и экспериментального определения свойств рабочих тел, теплоносителей и процессов тепломассообмена для объяснения явлений окружающего мира;
- выработать способность к физическому и математическому моделированию процессов переноса теплоты (массы), полей температуры, базирующихся на этих моделях, методах экспериментального изучения процессов тепломассообмена.

Процесс изучения дисциплины направлен на формирование следующих обще профессиональных компетенций:

 ОПК-2 способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования; ОПК-3 способностью использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы.

В результате изучения дисциплины обучающийся должен: знать:

- фундаментальные законы технической термодинамики и тепломассообмена, являющихся основой функционирования тепловых машин, аппаратов и их эффективности;
- рабочие процессы, протекающие в тепловых машинах, свойства рабочих тел и теплоносителей, законы и модели переноса теплоты и массы в неподвижных и движущихся средах;
- методы теоретического и экспериментального исследования процессов тепломассообмена;
- особенности физического и математического моделирования процессов переноса теплоты (массы), протекающие в реальных физических объектах, в частности, в установках энергетики и промышленности.

уметь:

– выбирать и использовать естественнонаучные законы, закономерности и физикоматематические модели для расчета и математического анализа процессов тепломассообмена в теплоэнергетических и теплотехнологических установках, методы оценки тепловой эффективности этих установок.

владеть:

 методами определения термодинамических свойств рабочих тел и теплоносителей, расчета процессов и показателей тепловой экономичности в тепловыхустановках, физического и математического моделирования процессов тепломассообмена и расчета потоков теплоты и массы, полей температуры и концентрации компонентов смесей в элементах этих установок.

3. Место дисциплины в структуре образовательной программы

Данная учебная дисциплина относится к дисциплинам базовой части, что означает формирование в процессе обучения у бакалавра основных общепрофессиональных знаний и компетенций в рамках выбранного профиля и профессионального стандарта.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин ОПОП и написания выпускной квалификационной работы.

Перечень обеспечивающих, сопутствующих и обеспечиваемых дисциплин

Обеспечивающие	Сопутствующие	Обеспечиваемые
	П	Защита выпускной квалификаци-
Математика	Прикладная механика	онной работы, включая
		подготовку к процедуре защиты
Физика		и процедуру защиты

Указанные связи дисциплины дают обучающемуся системное представление о комплексе изучаемых дисциплин в соответствии с ФГОС ВО, что обеспечивает требуемый теоретический уровень и практическую направленность в системе обучения и будущей деятельности выпускника.

4. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины

Оощая трудосмкость дисциплины				
Виды учебной работы	Всего академических часов			
Биды учеоной расоты	очная форма	заочная форма		
Контактная работа с преподавателем:	34	12		
Лекции (Л)	16	4		
Практические занятия (ПЗ)	-	-		

Лабораторные работы (ЛР)	18	8
Самостоятельная работа обучающихся	74	96
Изучение теоретического курса	30	40
Подготовка к текущему контролю	44	52
Подготовка к промежуточной аттестации	-	4
Вид промежуточной аттестации	зачет	зачет
Общая трудоемкость	3/108	3/108

^{*}Контактная работа обучающихся с преподавателем, в том числе с применением дистанционных образовательных технологий, включает занятия лекционного типа, и (или) занятия семинарского типа, лабораторные занятия, и (или) групповые консультации, и (или) индивидуальную работу обучающегося с преподавателем, а также аттестационные испытания промежуточной аттестации. Контактная работа может включать иные виды учебной деятельности, предусматривающие групповую и индивидуальную работу обучающихся с преподавателем. Часы контактной работы определяются Положением об организации и проведении контактной работы при реализации образовательных программ высшего образования, утвержденным Ученым советом УГЛТУ от 25 февраля 2020 года.

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов

5.1. Трудоемкость разделов дисциплины

очная форма обучения

	T-1					
№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контакт- ной работы	Самостоятельная работа
1	Техническая термодинамика	6	-	8	14	24
2	Основы теории теплообмена	6	-	10	16	36
3	Промышленная теплотехника	4	-	-	4	14
	Итого по разделам		-	18	34	74
	Промежуточная аттестация					-
	Всего:	108				

заочная форма обучения

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	Всего контакт- ной работы	Самостоятельная работа
1	Техническая термодинамика	1		4	5	30
2	Основы теории теплообмена	2		4	6	42
3	Промышленная теплотехника	1		-	1	20
	Итого по разделам		-	8	12	92
	Промежуточная аттестация					4
	Bcero:	108				

5.2. Содержание занятий лекционного типа

Раздел 1. Техническая термодинамика

Предмет теплотехники, связь с другими отраслями знаний. Основные понятия и определения технической термодинамики. Первый закон термодинамики, энтальпия, p-v - диаграмма. Теплоемкость газов.

Второй закон термодинамики, энтропия, Т-s - диаграмма. Понятие о циклах, термический КПД цикла. Циклы Карно, холодильных машин, тепловых насосов. Основные термодинамические процессы идеальных газов. Реальные газы - водяной пар. Процессы парообразования в p-v, T-s и h-s - диаграммах. Влажный воздух.

Термодинамика открытых систем: уравнение первого закона термодинамики для потока, течение газа в соплах и диффузорах, дросселирование газов и паров. Термодинамический анализ процессов в компрессорах. Циклы теплосиловых установок: двигателей внутреннего сгорания, газотурбинных и паротурбинных установок.

Раздел 2. Основы теории теплообмена

Виды и количественные характеристики переноса тепла. Теплопроводность: закон Фурье, коэффициент теплопроводности, передача тепла теплопроводностью через плоскую и цилиндрическую стенки.

Конвективный теплообмен: закон Ньютона - Рихмана, коэффициент теплоотдачи. Понятие теплового пограничного слоя и начального участка. Основные критериальные уравнения для расчета коэффициентов теплоотдачи.

Теплоотдача при изменении агрегатного состояния вещества (кипение, конденсация). Передача тепла излучением: основные определения, законы Стефана - Больцмана и Кирхгофа, теплообмен излучением между двумя телами.

Теплопередача через плоскую и цилиндрическую стенки, коэффициент теплопередачи. Методы интенсификации теплопередачи. Основы расчета теплообменных аппаратов: уравнения теплового баланса и теплопередачи, схемы движения теплоносителей, средний температурный напор. Типовые конструкции теплообменных аппаратов.

Раздел 3. Промышленная теплотехника

Виды и характеристики топлива, основы горения. Котельные установки: классификация, принципиальная технологическая схема. Устройство парового котла. Охрана окружающей среды от вредных выборов котельных установок.

Тепловой баланс и КПД котельного агрегата. Типы и конструкции паровых и водогрейных котлов, основы водоподготовки. Тепловые электрические станции: принципиальные схемы конденсационной ТЭС и ТЭЦ.

5.3. Темы и формы занятий семинарского типа

Учебным планом по дисциплине предусмотрены лабораторные работы.

№	Наименование раздела дисциплины (модуля)	Форма проведения	Трудоёмкость, ч	
145	ттаименование раздела дисциплины (модуля)	занятия	очная	заочная
1	Раздел 1. Техническая термодинамика.	Лабораторное	4	2
1	Определение изобарной теплоемкости воздуха	занятие	4	2
2	Раздел 1. Техническая термодинамика.	Лабораторное	2.	1
	Определение показателя адиабаты	занятие	2	1
3	Раздел 1. Техническая термодинамика.	Лабораторное	2.	1
3	Определение теплоты парообразования воды	занятие	2	1
	Раздел 2. Основы теории теплообмена.			1
4	Определение коэффициента теплопроводности	Лабораторное	2	2
4	теплоизоляционных материалов и коэффициен-	занятие	2	2
	та теплопередачи			
	Раздел 2. Основы теории теплообмена.	Побороториоз		
5	Исследование теплоотдачи при движении воз-	Лабораторное	4	1
	духа в пучке труб	занятие		
	Раздел 2. Основы теории теплообмена.			
6	Исследование теплоотдачи при свободном	Лабораторное	1	1
	движении жидкости в неограниченном про-	занятие	4	1
	странстве			
Ито	го часов:		18	8

5.4. Детализация самостоятельной работы

№	Наименование раздела	Вид самостоятельной работы	Трудоемкость, час	
п/п	дисциплины (модуля)	Вид самостоятельной работы	очная	заочная
1	Раздел 1. Техническая термодинамика	Подготовка к лабораторным работам	24	30
2	Раздел 2. Основы теории теплообмена	Подготовка к лабораторным работам	36	42

3	Раздел 3. Промышленная теп-	Подготовка к текущему	14	20
3	лотехника	контролю	17	20
	Подготовка к промежуточной	Изучение лекционного материала,	-	4
4	аттестации (зачет)	литературных источников в соот-		
		ветствии с тематикой		
	Всего часов:		74	96

6. Перечень учебно-методического обеспечения по дисциплине Основная и дополнительная литература

№ п/п	Автор, наименование	Год издания	Примечание			
	Основная учебная литература					
1	Теплофизика: неравновесные процессы тепломассопереноса / В.И. Байков, Н.В. Павлюкевич, А.К. Федотов, А.И. Шнип. – Минск: Вышэйшая школа, 2018. – 480 с.: ил. – Режим доступа: по подписке. – URL: http://biblioclub.ru/index.php?page=book&id=560818 . – Библиогр.: с. 470-472. – ISBN 978-985-06-2941-8. – Текст: электронный.	2018	Полнотекстовый доступ при входе по логину и паролю*			
2	Байков, В.И. Теплофизика: термодинамика и статистическая физика / В.И. Байков, Н.В. Павлюкевич. — Минск: Вышэйшая школа, 2018. — 448 с.: ил. — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=560679 . — Библиогр.: с. 443-444. — ISBN 978-985-06-2785-8. — Текст: электронный.	2018	Полнотекстовый доступ при входе по логину и паролю*			
3	Тинькова, С.М. Теплофизика и металлургическая теплотехника: учебное пособие / С.М. Тинькова. – Красноярск: СФУ, 2017. – 168 с. – ISBN 978-5-7638-3751-3. – Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. – URL: https://e.lanbook.com/book/117789 – Режим доступа: для авториз. пользователей.	2017	Полнотекстовый доступ при входе по логину и паролю*			
	Дополнительная учебная литератур	oa				
4	Беляев, С.А. Надежность теплоэнергетического оборудования ТЭС / С.А. Беляев, А.В. Воробьев, В.В. Литвак; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет». — Томск: Издательство Томского политехнического университета, 2015. — 248 с.: ил., табл., схем. — Режим доступа: по подписке. — URL: http://biblioclub.ru/index.php?page=book&id=442071 . — Библиогр. в кн. — Текст: электронный.	2015	Полнотекстовый доступ при входе по логину и паролю*			
5	Хабланян, М.Х. Вакуумная техника: оборудование, проектирование, технологии, эксплуатация: в 2 ч.: [16+] / М.Х. Хабланян, Г.Л. Саксаганский, А.В. Бурмистров; Министерство образования и науки России, Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технологический университет». — Казань: Издательство КНИТУ, 2016. — Ч. 2. Вакуумные насосы. — 300 с.: ил. — Режим доступа: по подписке. —	2016	Полнотекстовый доступ при входе по логину и паролю*			

№ п/п	Автор, наименование		Примечание
	URL: http://biblioclub.ru/index.php?page=book&id=500916		
	Библиогр.: с. 283-284. – ISBN 978-5-7882-1977-6. – Текст:		
	электронный.		

^{*} прежде чем пройти по ссылке, необходимо войти в систему

Функционирование электронной информационно-образовательной среды обеспечивается соответствующими средствами информационно-коммуникационных технологий.

Электронные библиотечные системы

Каждый обучающийся обеспечен доступом к электронной библиотечной системе УГЛТУ (http://lib.usfeu.ru/), ЭБС Издательства Лань http://e.lanbook.com/, ЭБС Университетская библиотека онлайн http://biblioclub.ru/, содержащих издания по основным изучаемым дисциплинам и сформированных по согласованию с правообладателями учебной и учебнометодической литературы.

Справочные и информационные системы

- 1. Справочно-правовая система «Консультант Плюс».
- 2. Информационно-правовой портал Гарант. Режим доступа: http://www.garant.ru/
- 3. База данных Scopus компании Elsevier B.V. https://www.scopus.com/

Профессиональные базы данных

- 1. Информационные системы, банки данных в области охраны окружающей среды и природопользования Режим доступа: http://минприродыро.pф
- 2. Информационная система «ТЕХНОРМАТИВ». Режим доступа: https://www.technormativ.ru/;
 - 3. Научная электронная библиотека elibrary. Режим доступа: http://elibrary.ru/.
 - 4. Программы для экологов EcoReport. Режим доступа: http://ecoreport.ru/;
- 5. Информационные системы «Биоразнообразие России». Режим доступа: http://www.zin.ru/BioDiv/

Нормативно-правовые акты

- 1. Гражданский кодекс Российской Федерации от 30 ноября 1994 года N 51-Ф3. Режим доступа: https://base.garant.ru/10164072/
- 2. Федеральный закон «О защите прав потребителей» от 07.02.1992 N 2300-1 (ред. от 08.12.2020). Режим доступа: https://normativ.kontur.ru/document?moduleId=1&documentId=387321
- 3. Федеральный закон «Об обеспечении единства измерений» от 26.06.2008 N 102-Ф3. Режим доступа: https://normativ.kontur.ru/document?moduleId=1&documentId=352369
- 4. Федеральный закон «О техническом регулировании» от 27.12.2002 N 184-Ф3. Режим доступа: https://normativ.kontur.ru/document?moduleId=1&documentId=383886

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Формируемые компетенции	Вид и форма контроля
ОПК-2 способностью использовать основные законы	Промежуточный контроль: зачет
естественнонаучных дисциплин в профессиональной	в форме устного ответа на кон-
деятельности, применять методы математического	трольные вопросы
анализа и моделирования, теоретического и экспери-	Текущий контроль: опрос по те-
ментального исследования	мам лабораторных работ

ОПК-3 способностью использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы

Промежуточный контроль: зачет в форме устного ответа на контрольные вопросы

Текущий контроль: опрос по темам лабораторных работ

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Критерии оценивания устного ответа на зачете (промежуточный контроль, формирование компетенций ОПК-2 и ОПК-3):

зачтено — дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Знание об объекте демонстрируется на фоне понимания его в системе данной науки и междисциплинарных связей. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

зачтено — дан полный, развернутый ответ на поставленный вопрос, показано умение выделить существенные и несущественные признаки, причинно-следственные связи. Ответ четко структурирован, логичен, изложен в терминах науки. Однако допущены незначительные ошибки или недочеты, исправленные бакалавром с помощью «наводящих» вопросов;

зачтено — дан неполный ответ, логика и последовательность изложения имеют существенные нарушения. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания бакалавром их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Умение раскрыть конкретные проявления обобщенных знаний не показано. Речевое оформление требует поправок, коррекции;

не зачтено — бакалавр демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

Критерии оценивания устного ответа на вопросы к коллоквиуму по лабораторным работам (текущий контроль формирования компетенций ОПК-1):

зачтено — дан полный ответ на поставленный вопрос, доказательно раскрыты основные положения темы. Ответ изложен литературным языком в терминах науки, показана способность быстро реагировать на уточняющие вопросы;

зачтено — дан полный ответ на поставленный вопрос, в достаточной мере показано умение выделить существенные и несущественные признаки. Однако допущены незначительные ошибки или недочеты, исправленные бакалавром с помощью «наводящих» вопросов;

зачтено – дан неполный ответ. Допущены грубые ошибки при определении сущности раскрываемых понятий, теорий, явлений, вследствие непонимания бакалавром их существенных и несущественных признаков и связей. В ответе отсутствуют выводы. Речевое оформление требует поправок, коррекции;

не зачтено — обучающийся демонстрирует незнание теоретических основ предмета, не умеет делать аргументированные выводы и приводить примеры, делает ошибки, которые не может исправить, даже при коррекции преподавателем, отказывается отвечать на занятии.

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры контрольных вопросов к зачету (промежуточный контроль)

- 1. Основные понятия технической термодинамики, параметры и уравнения состояния, термодинамический процесс.
- 2. Первый закон термодинамики и его аналитические выражения.
- 3. Второй закон термодинамики, энтропия, Т-s-диаграмма.
- 4. Круговые термодинамические процессы (прямые и обратные циклы). Цикл Карно. Термический КПД цикла.
- 5. Теплоемкость: определение, c_p и c_v и связь между ними.
- 6. Водяной пар как рабочее тело, закономерности парообразования.
- 7. Термодинамические процессы идеальных газов.
- 8. Термодинамика смеси идеальных газов. Влажный воздух.
- 9. Основные закономерности течения газа в соплах и диффузорах.
- 10. Дросселирование газов и паров.
- 11. Термодинамический анализ процессов в компрессорах.
- 12. Термодинамические циклы поршневых двигателей внутреннего сгорания.
- 13. Термодинамические циклы паротурбинных установок.
- 14. Термодинамический цикл газотурбинной установки.
- 15. Виды и количественные характеристики переноса тепла, понятие теплоотдачи и теплопередачи.
- 16. Передача тепла теплопроводностью: закон Фурье, физический смысл коэффициента теплопроводности.
- 17. Конвективный теплообмен: закон Ньютона-Рихмана, коэффициент теплоотдачи и факторы, влияющие на его величину.
- 18. Тепловой пограничный слой и термический начальный участок.
- 19. Виды критериальных уравнений конвективного теплообмена. Физический смысл критериев подобия Nu, Re, Gr, Pr.
- 20. Теплоотдача при конденсации и кипении.
- 21. Передача тепла излучением: основные понятия и определения, закон Стефана-Больцмана.
- 22. Теплопередача и методы ее интенсификации, физический смысл коэффициента теплопередачи.
- 23. Уравнения теплового баланса теплообменных аппаратов «жидкость-жидкость» и «пар-жидкость».
- 24. Основы методики расчета теплообменных аппаратов.
- 25. Типовые конструкции теплообменных аппаратов.
- 26. Виды и характеристики энергетического топлива, основы горения.
- 27. Основные конструкции паровых и водогрейных котлов, их классификация по производительности.
- 28. Котельные установки: классификация, принципиальные технологические схемы.
- 29. Тепловой баланс котельного агрегата. КПД котла и КПД ТЭС.

Пример вопросов, выносимых на опрос (текущий контроль)

- -В чем заключается механизм конвективного теплообмена? В каких средах возможна конвекция?
- -Как рассчитать тепловой поток, переносимый от среды к поверхности за счет конвекции?
 - -Что характеризует коэффициент теплоотдачи конвекцией? Какова его размерность?

- -От каких факторов зависит a_{κ} ?
- -Учитывается ли теплопроводность при конвективном теплообмене? Поясните.
- -Каковы причины возникновения свободной конвекции?
- -Каковы причины возникновения вынужденной конвекции?
- -Перечислите критерии конвективного теплообмена. Что характеризует каждый критерий?
 - -Какой критерий является определяемым и с какой целью его находят?

7.4. Соответствие шкалы оценок и уровней сформированных компетенций

Уровень сформированных компетенций	Оценка	Пояснения
Высокий	зачтено	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены. Обучающийся способен на высоком уровне использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы, самостоятельно решать типовые задачи в области профессиональной деятельности, связанной с процессами теплогенерации, теплообмена, теплоснабжения и энергосбережения
Базовый	зачтено	Теоретическое содержание курса освоено полностью, все предусмотренные программой обучения учебные задания выполнены с незначительными замечаниями. Обучающийся способен на базовом уровне использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы, решать типовые задачи в области профессиональной деятельности, связанной с процессами теплогенерации, теплообмена, теплоснабжения и энергосбережения
Пороговый	зачтено	Теоретическое содержание курса освоено частично, большинство предусмотренных программой обучения учебных заданий выполнено, в них имеются ошибки. Обучающийся способен на пороговом уровне использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы, под руководством решать типовые задачи в области профессиональной деятельности, связанной с процессами теплогенерации, теплообмена, теплоснабжения и энергосбережения
Низкий	не зачтено	Теоретическое содержание курса не освоено, большинство предусмотренных программой обучения учебных заданий либо не выполнены, либо содержат грубые ошибки; дополнительная самостоятельная работа над материалом не привела к какому-либо значительному повышению качества выполнения учебных заданий. Обучающийся не способен использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы, не готов решать типовые задачи в области профессиональной деятельности, связанной с процессами теплогенерации, теплообмена, теплоснабжения и энергосбережения

8. Методические указания для самостоятельной работы обучающихся

Изучение дисциплины следует начинать с проработки настоящей рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

Студентам рекомендуется получить в библиотеке учебную литературу по дисциплине, необходимую для эффективной работы на всех видах аудиторных занятий, а также для самостоятельной работы по изучению дисциплины.

Успешное освоение курса предполагает активное, творческое участие студента путем планомерной, повседневной работы.

При самостоятельной работе студентов рекомендуется изучить основную литературу, ознакомиться с дополнительной литературой и методическими указаниями. При этом учесть рекомендации преподавателя и требования рабочей программы. Дорабатывать свой конспект лекций, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной рабочей программой.

В процессе изучения дисциплины «Теплофизика» обучающихся основными видами самостоятельной работы являются:

- подготовка к аудиторным занятиям (лекциям, лабораторным занятиям) и выполнение соответствующих заданий;
- самостоятельная работа над отдельными темами учебной дисциплины в соответствии с учебно-тематическим планом;
 - подготовка к промежуточной аттестации (зачету).

По всем непонятным вопросам обращаться за методической помощью к преподавателю. Своевременная и качественная подготовка и выполнение самостоятельной работы базируется на соблюдении настоящих рекомендаций и изучении рекомендованной литературы. Обучающийся может дополнить список использованной литературы современными источниками, не представленными в списке рекомендованной литературы, и в дальнейшем использовать собственные подготовленные учебные материалы.

К зачету допускаются студенты, которые выполнили все необходимые лабораторные работы.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Для успешного овладения дисциплиной используются следующие информационные технологии обучения:

- При проведении лекций используются презентации материала в программе Microsoft Office (PowerPoint), выход на профессиональные сайты, использование видеоматериалов различных интернет-ресурсов.
- Лабораторные занятия по дисциплине проводятся в специализированной учебной аудитории с использованием методических указаний, нормативно-технической литературы.
- в случае дистанционного изучения дисциплины и самостоятельной работы используется ЭИОС (MOODLE).

В процессе изучения дисциплины учебными целями являются первичное восприятие учебной информации о теоретических основах и принципах работы с документами (планы, схемы, регламенты), ее усвоение, запоминание, а также структурирование полученных знаний и развитие интеллектуальных умений, ориентированных на способы деятельности репродуктивного характера. Посредством использования этих интеллектуальных умений достигаются узнавание ранее усвоенного материала в новых ситуациях, применение абстрактного знания в конкретных ситуациях.

Для достижения этих целей используются в основном традиционные информативноразвивающие технологии обучения с учетом различного сочетания пассивных форм (лекция, лабораторные работы, консультация, самостоятельная работа) и репродуктивных методов обучения (повествовательное изложение учебной информации, объяснительно-иллюстративное изложение).

Университет обеспечен необходимым комплектом лицензионного программного обеспечения:

- семейство коммерческих операционных систем семейства Microsoft Windows;
- офисный пакет приложений Microsoft Office;
- программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат.ВУЗ».

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Реализация учебного процесса осуществляется в специальных учебных аудиториях университета для проведения занятий лекционного типа, лабораторных работ, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Все аудитории укомплектованы специализированной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории. При необходимости обучающимся предлагаются наборы демонстрационного оборудования и учебнонаглядных пособий, обеспечивающие тематические иллюстрации.

Самостоятельная работа обучающихся выполняется в специализированной аудитории, которая оборудована учебной мебелью, компьютерной техникой с возможностью подключения к сети "Интернет" и обеспечением доступа в электронную информационнообразовательную среду УГЛТУ.

Есть помещение для хранения и профилактического обслуживания учебного оборудования.

Требования к аудиториям

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
Помещение для занятий лекционного типа, групповых и индивидуальных консультаций, текущей и промежуточной аттестации	Столы, аудиторные скамьи, меловая доска, интерактивная доска, проектор; переносное оборудование - ноутбук.
Помещение для лабораторных занятий	Учебная лаборатория (Технической термодинамики) для проведения лабораторных занятий, оснащенная столами и стульями; рабочими местами, шкафами, необходимым оборудованием, инструментами и следующими лабораторными установками: № 1 "Определение показателя адиабаты", № 2 "Определение изобарной теплоемкости воздуха", №3 "Определение теплоты парообразовании воды").
	Учебная лаборатория (Лаборатория Теплообмена) для проведения лабораторных занятий, оснащенная столами и стульями; рабочими местами, шкафами, необходимым оборудованием, инструментами и следующими лабораторными установками: №4 «Определение коэффициента теплопроводности теплоизоляционных материалов и коэффициента теплопередачи», №5 «Исследование теплоотдачи при движении воздуха в пучке труб», №6 «Исследование теплоотдачи при свободном движении жидкости в неограниченном пространстве»).

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
Помещения для самостоятельной работы	Столы, стулья, экран, проектор. Рабочие места студентов оснащены компьютерами с выходом в сеть Интернет и электронную информационную образовательную среду.
Помещение для хранения и профилактического обслуживания учебного оборудования	Расходные материалы для ремонта и обслуживания техники. Места для хранения оборудования